108k views
2 votes
Solve using elimination.
–6x + 3y = 3
–6x + 6y =18

Solve using elimination. –6x + 3y = 3 –6x + 6y =18-example-1

1 Answer

3 votes

Given:-


  • \textsf{–6x + 3y = 3 --- eqⁿ ( i )}


\:


  • \textsf{–6x + 6y =18 --- eqⁿ ( ii )}


\:

Now , subtract the eqⁿ ( i ) to eqⁿ ( ii ) :


\sf{ \cancel{–6x} + 3y = 3} \\ \: \: \sf{ \cancel{–6x }+ 6y =18} \\ \sf{———————} \\ \: \: \: \: \: \: \: \: \: \: \: \: \textsf{ -3y = -15} \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \sf{y = \cancel( - 15)/( - 3) } \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \underline{ \boxed{ \purple{\textsf{ \: y = 5 \: }}}}


\:

now , put the value of y = 5 in eqⁿ ( i ) :


  • \textsf{–6x + 3y = 3}


\:


  • \textsf{–6x + 3( 5 ) = 3 }


\:


  • \textsf{–6x + 15 = 3}


\:


  • \textsf{–6x = 3 - 15}


\:


  • \textsf{–6x = - 12}


\:


  • \sf{x = \cancel( - 12)/( - 6)}


\:


  • \underline{ \boxed{\color{purple}{\textsf{ x= 2}}}}


\:


\green{ \boxed{ ( \boxed{ \sf \red{x = 2}} ,\boxed{ \sf \red{y = 5}} )}}


\:

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

hope it helps ⸙

User Iiic
by
8.4k points