19,996 views
40 votes
40 votes
Find the value of B, Please.


(-5x^3+2x+3)/(x+2) = A+(B)/(x+2)

A. -13
B. 39
C. -21
D. -33

User Mswieboda
by
2.6k points

2 Answers

14 votes
14 votes

Answer:

B. 39

Explanation:

Divide the polynomials using long division:


\large \begin{array}{r}-5x^2+10x-18\phantom{)}\\x+2{\overline{\smash{\big)}\,-5x^3\;\;\;\;\;\;\;\;\;\;\;+2x+3\phantom{)}}}\\{-~\phantom{(}\underline{(-5x^3-10x^2)\phantom{-b)))))))}}\\10x^2+2x+3\phantom{)}\\-~\phantom{()}\underline{(10x^2+20x)\phantom{)))}}\\-18x+3\phantom{)}\\-~\phantom{()}\underline{(-18x-36)\phantom{}}\\39\phantom{)}\\\end{array}

The solution is the quotient plus the remainder divided by the divisor.

Solution


-5x^2+10x-18+(39)/(x+2)

User Colin Lazarini
by
3.2k points
30 votes
30 votes

Answer:

  • B) 39

------------------------------

We need to find the remainder when -5x³ + 2x + 3 is divided by x + 2.

According to the remainder theorem, the remainder is the value of the polynomial when x = - 2:

  • -5(-2)³ + 2(-2) + 3 =
  • - 5(-8) - 4 + 3 =
  • 40 - 1 =
  • 39

The matching choice is B.

User Gines Capote
by
2.7k points