Answer:
m∠P = 13°, m∠Q = 65° and m∠R = 102°
Explanation:
If two triangles are similar, their corresponding angles are the same size.
If ΔCDE ~ ΔPQR then:
- m∠C = m∠P
- m∠D = m∠Q
- m∠E = m∠R
As m∠C = 13° and m∠D = 65° then:
- m∠C = m∠P = 13°
- m∠D = m∠Q = 65°
- m∠E = m∠R
Interior angles of a triangle sum to 180°. Therefore:
⇒ m∠P + m∠Q + m∠R = 180°
⇒ 13° + 65° + m∠R = 180°
⇒ 78° + m∠R = 180°
⇒ 78° + m∠R - 78° = 180° - 78°
⇒ m∠R = 102°
Therefore, the measures of angles P, Q and R are:
- m∠P = 13°
- m∠Q = 65°
- m∠R = 102°