Means and Variances of Linear Combinations:
(a) X1 - 2X2
Mean: μa = μ1 - 2μ2
Variance: σa2 = σ12 + 4σ22 + 4σ122
(b) X1 + 2X2 - 3
Mean: μb = μ1 + 2μ2 - 3
Variance: σb2 = σ12 + 4σ22 + 4σ122
(c) 3X1 - 4X2
Mean: μc = 3μ1 - 4μ2
Variance: σc2 = 9σ12 + 16σ22
In the case that X1 and X2 are independent, then σ122 = 0, so:
(a) X1 - 2X2
Mean: μa = μ1 - 2μ2
Variance: σa2 = σ12 + 4σ22
(b) X1 + 2X2 - 3
Mean: μb = μ1 + 2μ2 - 3
Variance: σb2 = σ12 + 4σ22
(c) 3X1 - 4X2
Mean: μc = 3μ1 - 4μ2
Variance: σc2 = 9σ12 + 16σ22