Answer:
Let's call the speed of the jet in still air "j" and the speed of the wind "w".
When flying with the tailwind, the effective speed of the jet is j + w. We know that it can travel 2040 miles in 4 hours, so:
2040 = 4(j + w)
Simplifying this equation, we get:
j + w = 510
When flying into the headwind, the effective speed of the jet is j - w. We know that it can only travel 1560 miles in 4 hours, so:
1560 = 4(j - w)
Simplifying this equation, we get:
j - w = 390
Now we have two equations with two variables:
j + w = 510
j - w = 390
We can solve this system of equations using elimination. Adding the two equations, we get:
2j = 900
Dividing both sides by 2, we get:
j = 450
So the speed of the jet in still air is 450 mph.
Now we can use either equation to solve for the speed of the wind. Let's use the first equation:
j + w = 510
Substituting j = 450, we get:
450 + w = 510
Subtracting 450 from both sides, we get:
w = 60
So the speed of the wind is 60 mph.
Explanation: