99.7k views
5 votes
Simplify the product: (4x-3) (3x+1)

O A. x-2
OB. 12x²-3
O C. 12x-5x-3
OD. 12x³-9x² +4x-3

User Moet
by
8.0k points

1 Answer

2 votes

Answer:


\large\boxed{\mathtt{C) \ 12x^(2)-5x-3}}

Explanation:


\textsf{For this problem, we are asked to multiply 2 Binomials.}


\textsf{We should use the FOIL Method.}


\large\underline{\textsf{FOIL Broken Down;}}


\textsf{F - Fronts}


\textsf{O - Outers}


\textsf{I - Inners}


\textsf{L - Last}


\large\underline{\textsf{For Example.}}


\mathtt{(2x+2y)(3x+3y)}


\mathtt{(F) \ 2x * 3x = 6x^(2)}


\mathtt{(O) \ 2x * 3y = 6xy}


\mathtt{(I) \ 2y * 3x = 6xy}


\mathtt{(L) \ 2y * 3y = 6y^(2)}


\textsf{Let's use the FOIL Method for our problem.}


\large\underline{\textsf{FOIL;}}


\mathtt{(4x-3)(3x+1)}


\mathtt{(F) \ 4x * 3x = 12x^(2)}


\mathtt{(O) \ 4x * 1 = 4x}


\mathtt{(I) \ -3 * 3x = -9x}


\mathtt{(L) \ -3 * 1 = -3}


\large\underline{\textsf{We should have;}}


\mathtt{12x^(2)+4x-9x-3}


\large\underline{\textsf{Combine Like Terms;}}


\large\boxed{\mathtt{C) \ 12x^(2)-5x-3}}

User Vicer
by
9.1k points