51.2k views
3 votes
Write the equation for a parabola with a focus at (2,2) and a directrix at x=8

User PtrTon
by
8.6k points

1 Answer

5 votes

Answer:

(y - 2)² = -12(x - 5)

Explanation:

A parabola is a locus of points, which are equidistant from the focus and directrix;

Generic cartesian equation of a parabola:

y² = 4ax, where the:

Focus, S, is: (a, 0)

Directrix, d, is: x = -a

a > 0

Put simply, a is the horinzontal difference between the directrix and the vertex or between the vertex and focus;

Always a good idea to do a quick drawing of the graph;

We are the told the focus, F, is: (2, 2) and directrix, d, is: x = 8;

First thing to note, the vertex, or turning point will be in line with the focus vertically, i.e. they will share the same y-coordinate;

Horizonatally, it will be halfway between the focus and the directrix, i.e. halfway between 8 and 2;

Therefore, the vertex will be will be (5, 2);

We can also work out a:

a = 8 - 5 = 5 - 2

a = 3

Substituting this value of a into the generic cartesian equation:

y² = 4(3)x

y² = 12x

The focus and directrix will be:

S: (3, 0)

d: x = -3

Next thing to note, a parabola curves away from the directrix;

In this case, the directrix is x = 8, so the vertex will be the right-most point on the parabola, it will curve off to the left and the focus will also be to the left;

What we want to do is compare with y² = 12x;

This parabola, has a vertex (0, 0), which is the left-most point that curves off to the right and a focus also to the right;

Since we know the formula of this parabola, if we figure out how to transform it into the one in the question, we can find out it's equation;

What we should recognise first is that the parabola in the question is reflected in the y-axis, compared to y² = 12x;

So we apply the transformation that corresponds to this, i.e. use the f(-x) rule:

y² = 12(-x)

y² = -12x

Now the two graphs will have the same shape and orientation;

The focus and directrix will also be affected:

S: (-3, 0)

d: x = 3

Now, the only remaining difference would be the coordinates of the focus and directrix of the two graphs;

The focus of the graph in the question is 5 units to the right and 2 units upwards compared to the focus of y² = -12x;

The directrix is 5 units to the right of that of y² = -12x;

So we apply a translation transformation of 5 units right and 2 units up, like so:

(y - 2)² = -12(x - 5)

Replace y with (y - 2) to translate up 2 units;

Replace x with (x - 5) to translate 5 units right.

We know have a parabola with focus, (2, 2), directrix, x = 8 and vertex, (5, 2), i.e. the parabola in the question;

Hence, the equation of the parabola in the question is:

(y - 2)² = -12(x - 5)

It might seem a bit long and complicated to begin with, but can be done very quickly if you can get used to it.

Write the equation for a parabola with a focus at (2,2) and a directrix at x=8-example-1
User Bsmarcosj
by
8.0k points

No related questions found