Answer:
To solve the integral, we can use partial fractions and then integrate each term separately. The integrand can be written as:

Using partial fractions, we can write:

Multiplying both sides by (x+i)(x-i), we get:

Substituting x=i, we get:

Simplifying, we get:

Substituting x=-i, we get:
tex^4(1+i)^4 = (Ci+D)(-i-i) + (Ai+B)(-i+i)[/tex]
Simplifying, we get:

Substituting x=0, we get:

Substituting x=1, we get:

Solving these equations simultaneously, we get:
A = -22/7 + π
B = 0
C = 22/7 - π
D = -2/5
Therefore, the integral can be written as:
![\int_0^1 (x^4(1-x)^4)/(1+x^2)dx = \int_0^1 \left[(-22/7+\pi)/(x+i) + (22/7-\pi)/(x-i) - (2/5)/(1+x^2)\right]dx](https://img.qammunity.org/2024/formulas/mathematics/high-school/udjpx1m5sva1c1qzergy2irvt7huxdvfwc.png)
Integrating each term separately, we get:
![\int_0^1 (-22/7+\pi)/(x+i)dx = [-22/7+\pi]\ln(x+i) \bigg|_0^1 = [\pi-22/7]\ln\left((1+i)/(i)\right)](https://img.qammunity.org/2024/formulas/mathematics/high-school/86pspmz4k1jmkh19mw15d1ocy4eai5c6im.png)
![\int_0^1 (22/7-\pi)/(x-i)dx = [22/7-\pi]\ln(x-i) \bigg|_0^1 = [22/7-\pi]\ln\left((1-i)/(-i)\right)](https://img.qammunity.org/2024/formulas/mathematics/high-school/8ualxidwaoj97w0mlxpubgzl9hxlzqntw0.png)

Therefore, the correct options are:
A)

B)

C) 0
D)
