197k views
5 votes
Find any critical numbers of the function.

Find any critical numbers of the function.-example-1

1 Answer

3 votes

Answer:

(1, 2) and (-1, -2). or. (±1, ±2)

Explanation:


{ \sf{f(x) = \frac{4x}{ {x}^(2) + 1 } }} \\

- Simply, a critical number or critical point is gotten by differentiating the function.

From Quotient rule;


{ \sf{ {f}^(l)(x) = \frac{4( {x}^(2) + 1) - (2x)(4x)}{ {( {x}^(2) + 1)}^(2) } }} \\ \\ { \sf{f {}^(l)(x) = \frac{ {4x}^(2) + 4 - {8x}^(2) }{ {( {x}^(2) + 1) }^(2) } }} \\ \\ { \sf{f {}^(l)(x) = \frac{4(1 - {x}^(2)) }{ {( {x}^(2 ) + 1) }^(2) } }}

Then equate this derivative to zero;


{ \sf{0 = \frac{4(1 - {x}^(2) )}{ {( {x}^(2) + 1) }^(2) } }} \\ \\ { \sf{4(1 - {x}^(2) ) = 0}} \\ \\ { \sf{4 - {4x}^(2) = 0}} \\ \\ { \sf{4 {x}^(2) = 4}} \\ \\ { \sf{x = √(1) }} \\ \\ { \sf{ \underline{ \: x = \pm 1 \: }}}

Substitute for x in f(x)

For x = 1


{ \sf{f(1) = \frac{4(1)}{ {(1)}^(2) + 1} = (4)/(2) = 2 }} \\

For x = -1


{ \sf{f( - 1) = \frac{4( - 1)}{ {( - 1)}^(2) + 1 } = ( - 4)/(2) = - 2 }} \\

Therefore points are;

(1, 2) and (-1, -2)

User Jcreason
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories