87.3k views
4 votes
Find the distance between the points ( – 9, – 7) and ( – 3,1).

2 Answers

5 votes

Given:-


  • \textrm{( - 9, - 7)}


\:


  • \textrm{( -3 , 1 )}


\:

To find:-


  • \textrm{Distance between two points = ?}


\:

By using formula:-


  • \underline{ \star \small \boxed{{ \rm{ \purple{Distance = √(( x_2 - x_1 )² + ( y_2 - y_1 )²) }}}}}


\:

Solution:-


  • \rm \: D =√( ( x_2 - x_1 )² + ( y_2 - y_1 )²)


\:

where ,


\: \: \star \rm \red{x_1 = -9 , x_2 = -3 } \\\star \green {\rm y_1 = -7 , y_2 = 1}


\:


  • \rm \: D = √( ( -3 - ( - 9 ))² + ( 1 - (-7 ))²)


\:


  • \rm \: D = √(( -3 + 9)² + ( 1 + 7 )²)


\:


  • \rm \: D = √(( 6 )² + ( 8 )²)


\:


  • \rm \: D = √(36 + 64 )


\:


  • \rm \: D = √(100)


\:


  • \boxed{ \textrm{ \color{green}{D = 10 \: }}}


\:

Therefore , the distance between two points is 10 units !

━━━━━━━━━━━━━━━━━━━━━━━

hope it helps ⸙

User Yeputons
by
8.0k points
4 votes

Answer:

10 units

Explanation:

calculate the distance d using the distance formula

d =
\sqrt{(x_(2)-x_(1))^2+(y_(2)-y_(1))^2 }

with (x₁, y₁ ) = (- 9, - 7 ) and (x₂, y₂ ) = (- 3, 1 )

d =
√((-3-(-9))^2+(1-(-7)^2)

=
√((-3+9)^2+(1+7)^2)

=
√(6^2+8^2)

=
√(36+64)

=
√(100)

= 10 units

User JazzCat
by
8.7k points