87.3k views
4 votes
Find the distance between the points ( – 9, – 7) and ( – 3,1).

2 Answers

5 votes

Given:-


  • \textrm{( - 9, - 7)}


\:


  • \textrm{( -3 , 1 )}


\:

To find:-


  • \textrm{Distance between two points = ?}


\:

By using formula:-


  • \underline{ \star \small \boxed{{ \rm{ \purple{Distance = √(( x_2 - x_1 )² + ( y_2 - y_1 )²) }}}}}


\:

Solution:-


  • \rm \: D =√( ( x_2 - x_1 )² + ( y_2 - y_1 )²)


\:

where ,


\: \: \star \rm \red{x_1 = -9 , x_2 = -3 } \\\star \green {\rm y_1 = -7 , y_2 = 1}


\:


  • \rm \: D = √( ( -3 - ( - 9 ))² + ( 1 - (-7 ))²)


\:


  • \rm \: D = √(( -3 + 9)² + ( 1 + 7 )²)


\:


  • \rm \: D = √(( 6 )² + ( 8 )²)


\:


  • \rm \: D = √(36 + 64 )


\:


  • \rm \: D = √(100)


\:


  • \boxed{ \textrm{ \color{green}{D = 10 \: }}}


\:

Therefore , the distance between two points is 10 units !

━━━━━━━━━━━━━━━━━━━━━━━

hope it helps ⸙

User Yeputons
by
8.0k points
4 votes

Answer:

10 units

Explanation:

calculate the distance d using the distance formula

d =
\sqrt{(x_(2)-x_(1))^2+(y_(2)-y_(1))^2 }

with (x₁, y₁ ) = (- 9, - 7 ) and (x₂, y₂ ) = (- 3, 1 )

d =
√((-3-(-9))^2+(1-(-7)^2)

=
√((-3+9)^2+(1+7)^2)

=
√(6^2+8^2)

=
√(36+64)

=
√(100)

= 10 units

User JazzCat
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories