Answer:
y= 2(x+4)^2 -6
Explanation:
y= 2x^2 + 16x + 26
It is in the form y= ax^2 + bx + c
To rewrite in the form y=a(x-p)^2 + q
We need to fin p and q. We already have a in the original equation.
In y= 2x^2 + 16x + 26, a=2.
The formula say that: p=-b/2a
p= -16/(2*2)
p=-16/4
p=-4
In the formula, we replace a and y= 2(x-(-4))^2 +q
Obtaining, y= 2 (x+4)^2 + q
Now, to find q we need to obtain a point from the original equation. Commonly the y-intercept. In the form y= ax^2 + bx + c ; C is the y-intercept.
y-intercept: (0,c)
Therefore, in y= 2x^2 + 16x + 26
y-intercept: (0,26)
In the equation we already have:
y= 2(x+4)^2 +q
26= 2(0+4)^2 + q
26=2(4)^2 +q
26= 2(16) + q
26= 32 + q
-6 = q
Joining all the results, we obtain:
y= 2(x+4)^2 -6