Answer:
We can use the formula for compound interest to solve this problem:
A = P(1 + r/n)^(nt)
where:
A = the amount of money in the account after t years
P = the principal amount (initial investment)
r = the annual interest rate (as a decimal)
n = the number of times the interest is compounded per year
t = the number of years
Plugging in the given values:
P = $3,200
r = 0.031 (3.1% as a decimal)
n = 4 (quarterly compounding)
t = 8
A = 3200(1 + 0.031/4)^(4*8)
A = $4,100.53
Therefore, after 8 years, there will be $4,100.53 in the account.