Answer:
The continuous compounding formula is:
A = Pe^(rt)
where A is the amount after t years, P is the initial principal, r is the annual interest rate as a decimal, and e is Euler's number (approximately 2.71828).
We are given that P = $5,000, r = 0.045, and A = $7,840. We want to find t, the number of years.
We can solve for t by isolating it on one side of the equation:
A = Pe^(rt)
A/P = e^(rt)
ln(A/P) = rt
t = ln(A/P) / r
Substituting in the values we have:
t = ln(7840/5000) / 0.045
t ≈ 11
So it will take about 11 years for the investment to grow to $7,840