Answer:
√65
Explanation:
Compute the Euclidean distance between the following points:
p_1 = (-2, 3) and p_2 = (5, -1)
The Euclidean distance between points (x_1, y_1) and (x_2, y_2) is:
sqrt((x_1 - x_2)^2 + (y_1 - y_2)^2)
Substitute (x_1, y_1) = (-2, 3) and (x_2, y_2) = (5, -1):
= sqrt((-2 - 5)^2 + (--1 + 3)^2)
(-1)^2 = 1:
= sqrt((-2 - 5)^2 + (1 + 3)^2)
-2 - 5 = -(2 + 5):
= sqrt((-(2 + 5))^2 + (3 + 1)^2)
2 + 5 = 7:
= sqrt((-7)^2 + (3 + 1)^2)
Multiply each exponent in -7 by 2:
= sqrt((-1)^2×7^2 + (3 + 1)^2)
7^2 = 49:
= sqrt((-1)^2×49 + (3 + 1)^2)
(-1)^2 = 1:
= sqrt(49 + (3 + 1)^2)
3 + 1 = 4:
= sqrt(49 + 4^2)
4^2 = 16:
= sqrt(49 + 16)
| 1 |
| 4 | 9
+ | 1 | 6
| 6 | 5:
Answer: √65