161k views
5 votes
Here is a sketch of a curve.

The equation of the curve is y = x² + ax + b
where a and b are integers.
The points (0, -7) and (7, 0) lie on the curve.
Find the coordinates of the turning point of the curve.
Finish your answer by writing, Turning point at (..., ...)
YA
O
+

Here is a sketch of a curve. The equation of the curve is y = x² + ax + b where a-example-1
User TranQ
by
8.5k points

1 Answer

5 votes


{\Large \begin{array}{llll} y=x^2+ax+b \end{array}} \\\\[-0.35em] ~\dotfill\\\\ \begin{cases} x=0\\ y=-7 \end{cases}\implies -7=0^2+a(0)+b\implies \boxed{-7=b} \\\\[-0.35em] ~\dotfill\\\\ \begin{cases} x=7\\ y=0 \end{cases}\implies 0=7^2+a7+\stackrel{b}{(-7)}\implies 0=49+7a-7 \\\\\\ 0=42+7a\implies -42=7a\implies \cfrac{-42}{7}=a\implies \boxed{-6=a} \\\\\\ ~\hfill {\Large \begin{array}{llll} y=x^2-6x-7 \end{array}}~\hfill

now, let's get the "vertex" using the coefficients.


\textit{vertex of a vertical parabola, using coefficients} \\\\ y=\stackrel{\stackrel{a}{\downarrow }}{1}x^2\stackrel{\stackrel{b}{\downarrow }}{-6}x\stackrel{\stackrel{c}{\downarrow }}{-7} \qquad \qquad \left(-\cfrac{ b}{2 a}~~~~ ,~~~~ c-\cfrac{ b^2}{4 a}\right) \\\\\\ \left(-\cfrac{ -6}{2(1)}~~~~ ,~~~~ -7-\cfrac{ (-6)^2}{4(1)}\right) \implies \left( - \cfrac{ -6 }{ 2 }~~,~~-7 - \cfrac{ 36 }{ 4 } \right) \\\\\\ \left( 3 ~~~~ ,~~~~ -7 -9 \right)\implies {\Large \begin{array}{llll} (3~~,~-16) \end{array}}

User Svetoslav Dimitrov
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories