Answer:
Step-by-step explanation:
To calculate the standard enthalpy of formation for TICL(I), we need to use the given thermochemical equations and Hess's law. The equation for the formation of TICL(I) is:
C(s) + TiO₂ (s) + 2Cl(g) → TICL(I) + CO(g)
Using the given equations for the formation of CO(g) and TiO2(s), we can manipulate them to get the necessary reactants for the formation of TICL(I):
Ti(s) + O₂(g) → TiO₂(s) (reverse the equation)
C(s) + 1/2O₂(g) → CO(g) (multiply by 2)
Adding these two equations, we get:
Ti(s) + 2C(s) + O₂(g) → TiO₂(s) + 2CO(g)
This equation is the reverse of the equation given for the formation of TICL(I), so we need to flip its sign to get the correct value for the enthalpy change:
TICL(I) → C(s) + TiO₂ (s) + 2Cl(g) + CO(g)
ΔH° = -(-394 kJ/mol + 286 kJ/mol + 0 + (-221 kJ/mol))
ΔH° = -(-329 kJ/mol)
ΔH° = +329 kJ/mol
Therefore, the correct value for the standard enthalpy of formation for TICL(I) is +329 kJ/mol, which is option D.