The exponential function that models the quail population is:
P(t) = P0 * (1 + r)^t
where:
P0 is the initial population (385)
r is the annual growth rate (30% or 0.3)
t is the time in years
Substituting the values, we get:
P(t) = 385 * (1 + 0.3)^t
Simplifying:
P(t) = 385 * 1.3^t
To find the approximate population after 5 years, we substitute t = 5:
P(5) = 385 * 1.3^5
P(5) = 385 * 3.277
P(5) = 1262.45
Therefore, the approximate population after 5 years is 1262 quail