Answer:
The amount of water that can be heated by 1,000.0 J of heat energy depends on the mass of water and the specific heat capacity of water.
Assuming the water is at an initial temperature of 20.0°C, we can use the formula:
Q = mcΔT
Where:
Q = heat energy (Joules)
m = mass of water (in grams)
c = specific heat capacity of water (4.184 J/g°C)
ΔT = change in temperature (final temperature - initial temperature)
Rearranging the formula to solve for the mass of water:
m = Q / (c*ΔT)
Plugging in the given values:
m = 1000 J / (4.184 J/g°C * (final temperature - 20.0°C))
Assuming the final temperature is 100.0°C (the boiling point of water at standard pressure), the calculation becomes:
m = 1000 J / (4.184 J/g°C * (100.0°C - 20.0°C))
m = 1000 J / (4.184 J/g°C * 80.0°C)
m = 2.39 grams
Therefore, 1,000.0 J of heat energy can heat 2.39 grams of water from 20.0°C to 100.0°C.