let's reword it
what is the arc of a circle whose central angle is 100 revolutions and has a radius of 63÷2?
let's keep in mind that radius is half the diameter, and a revolution is 2π radians or 360°, so hmmm 100 revolutions will just be 360*100 = 36000°.
![\textit{arc's length}\\\\ s = \cfrac{\theta \pi r}{180} ~~ \begin{cases} r=radius\\ \theta =\stackrel{degrees}{angle}\\[-0.5em] \hrulefill\\ \theta =36000\\ r=(63)/(2) \end{cases}\implies s=\cfrac{(36000)\pi ((63)/(2))}{180}\implies s=\cfrac{(36000)((22)/(7)) ((63)/(2))}{180} \\\\\\ s=200((22)/(7)) ((63)/(2))\implies s=(200)(99)\implies \boxed{s=19800}~metres](https://img.qammunity.org/2024/formulas/mathematics/college/qlpmhrxqq0psjetf3236y5gc8iq248b8hg.png)