14.3k views
5 votes
if the length of a rectangle is decreased by 4 cm and the width is increased by 5 cm, the result will be a square. the area of this square will be 40cm^2 greater than the area of the rectangle. Find the area of the rectangle.

2 Answers

4 votes

Answer:

steps explanations: x - 4 = y + 5 (sides of a square)

(x - 4)(y + 5) = 40

Which gives;

(y + 5) (y + 5) = 40

y² + 10y + 25 = 40

y² + 10y + 25 - 40 = 0

y² + 10y - 15 = 0

a=1 b=10 and c=-15

if the length of a rectangle is decreased by 4 cm and the width is increased by 5 cm-example-1
User Murtza Gondal
by
8.5k points
2 votes

Answer: 30 cm^2.

Explanation:

Let the original length of the rectangle be l and its width be w. Then, according to the problem:

(l - 4) = (w + 5) (equation 1)

Also, the area of the square is 40 cm^2 more than the area of the rectangle. Mathematically, we can represent this as:

(l - 4 + 5)^2 = lw + 40

Simplifying the left-hand side and substituting equation 1, we get:

l^2 - 2lw + w^2 = lw + 40

l^2 - 3lw + w^2 - 40 = 0

(l - 8)(l - 5) = 0

Therefore, l = 8 or l = 5. If we substitute l = 8 into equation 1, we get:

w = (l - 4) - 5 = -1

This is not a valid solution since the width cannot be negative. Therefore, the only valid solution is l = 5, which gives:

w = (l - 4) + 5 = 6

So the area of the rectangle is:

A = lw = 5 x 6 = 30 cm^2.

User Mcwitt
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories