Answer: 30 cm^2.
Explanation:
Let the original length of the rectangle be l and its width be w. Then, according to the problem:
(l - 4) = (w + 5) (equation 1)
Also, the area of the square is 40 cm^2 more than the area of the rectangle. Mathematically, we can represent this as:
(l - 4 + 5)^2 = lw + 40
Simplifying the left-hand side and substituting equation 1, we get:
l^2 - 2lw + w^2 = lw + 40
l^2 - 3lw + w^2 - 40 = 0
(l - 8)(l - 5) = 0
Therefore, l = 8 or l = 5. If we substitute l = 8 into equation 1, we get:
w = (l - 4) - 5 = -1
This is not a valid solution since the width cannot be negative. Therefore, the only valid solution is l = 5, which gives:
w = (l - 4) + 5 = 6
So the area of the rectangle is:
A = lw = 5 x 6 = 30 cm^2.