149k views
2 votes
Square ABCD has vertices A(2,4) , B(2,11) , C(7,11) , and D(7,4) . The square ABCD is reflected on the x -axis and the y -axis. Find the coordinates of the vertices for square A′B′C′D′ . Choose 1 for Option A and 2 for Option B. Option A: Square A′B′C′D′ has vertices A′(−2,−4) , B′(−2,−11) , C′(−7,−11) , and D′(−7,−4) . Option B: Square A′B′C′D′ has vertices A′(2,−4) , B′(2,−11) , C′(7,−11) , and D′(7,−4) .(1 point)

User Barakadam
by
8.1k points

1 Answer

6 votes

After reflecting square ABCD on both the x-axis and y-axis, the vertices of square A'B'C'D' will have coordinates A'(−2,−4), B'(−2,−11), C'(−7,−11), and D'(−7,−4), which corresponds to Option A.

To find the coordinates of the vertices for square (A'B'C'D') after reflecting square (ABCD) over the x-axis and the y-axis:

For x-axis reflection, the y-coordinate is negated, and for y-axis reflection, the x-coordinate is negated.

1. X-axis reflection:


- A'(\(2, -4\))


- B'(\(2, -11\))


- C'(\(7, -11\))


- D'(\(7, -4\))

2. Y-axis reflection:


- A'(\(-2, 4\))


- B'(\(-2, 11\))


- C'(\(-7, 11\))


- D'(\(-7, 4\))

Comparing these results with the given options:

- Option A matches the coordinates after both reflections.

- Option B does not match the coordinates after the y-axis reflection.

Therefore, the correct answer is Option A: Square
\(A'B'C'D'\) has vertices
A'(\(-2, -4\)),
B'(\(-2, -11\)),
C'(\(-7, -11\)), and
D'(\(-7, -4\)).

User Marc Demierre
by
9.1k points