200k views
6 votes
Solve the following simultaneous equations 5x+7y = 17 ; 7x+5y = 19


User Bsoundra
by
5.2k points

1 Answer

10 votes

Answer:


x=2.\ y=1

Explanation:


We\ are\ given\ the\ following\ pair\ of\ equations:\\5x+7y=17\\7x+5y=19\\Now,\\As\ the\ co-efficients\ of\ none\ of\ the\ algebraic\ terms\ match,\\We\ can\ take\ the\ LCM\ of\ their\ co-efficients;\\As\ the\ co-efficients\ of\ the\ x-terms\ are\ 5,7\ respectively;\\Their\ LCM\ is\ 35.


Hence,\\7(5x+7y)=7(17)\\-5(7x+5y)=-5(19)\\Hence,\\35x+49y=119\\-35x-25y=-95\\Hence,\\Adding\ the\ two\ equations\ we\ have:\\(35x+49y)+(-35x-25y)=(119)+(-95)\\(35x-35x)+(49y-25y)=119-95\\24y=24\\y=(24)/(24)=1


Now,\\Lets\ consider\ the\ First\ Equation:\\5x+7y=17\\Substituting\ y=1,\\5x+7*1=17\\5x+7=17\\5x=17-7\\5x=10\\x=(10)/(5)=2\\\\Together,\\x=2.\ y=1

User Mladen Janjetovic
by
5.6k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.