94.3k views
21 votes
Verify [(1+tanx)/sinx] - secx = cscx. Show your work and identities you used.

User Joshwaa
by
3.6k points

2 Answers

9 votes

Answer:

let's start.

Explanation:


((1+tanx))/(sinx) -secx = cscx\\

we can write it as


((1 + tanx))/(sinx) = cscx + secx

starting with left hand side

LHS


((1 + tanx))/(sinx)


(1)/(sinx) + (tanx)/(sinx)\\\\cscx + tanx *(1)/(sinx)\\\\cscx + (sinx)/(cosx) *(1)/(sinx)\\\\cscx + (1)/(cosx)\\\\cscx + secx

∴ LHS = RHS

hence, proved

User GDB
by
3.2k points
6 votes

Answer:

See below

Explanation:

  • (1 + tanx)/sinx - secx = cscx
  • 1/ sinx + tanx/ sinx - 1/cosx = cscx
  • 1/ sinx + sinx/ cosx × 1/sinx - 1/ cos x = cscx
  • 1/ sinx + 1/cosx - 1/cosx = cscx
  • 1/ sinx = cscx
  • cscx = cscx

User Tim Meers
by
3.7k points