185k views
24 votes
Find the roots of the equation below.

x2 - 6x + 12 = 0

-3 ± √3
3 ± √3
-3 ± i√3
3 ± i√3

User Andynil
by
3.8k points

1 Answer

5 votes

Answer:


\displaystyle x = 3 \pm i√(3)

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Algebra I

  • Factoring
  • Standard Form: ax² + bx + c = 0
  • Quadratic Formula:
    \displaystyle x=(-b \pm √(b^2-4ac))/(2a)

Algebra II

  • Imaginary Numbers: √-1 = i

Explanation:

Step 1: Define

x² - 6x + 12 = 0

Step 2: Identify Variables

Compare the quadratic to standard form.

x² - 6x + 12 = 0 ↔ ax² + bx + c = 0

a = 1, b = -6, c = 12

Step 3: Find Roots

  1. Substitute in variables [Quadratic Formula]:
    \displaystyle x=(-(-6)\pm√((-6)^2-4(1)(12)))/(2(1))
  2. [Quadratic Formula] Simplify:
    \displaystyle x=(6\pm√((-6)^2-4(1)(12)))/(2(1))
  3. [Quadratic Formula] [√Radical] Evaluate exponents:
    \displaystyle x=(6\pm√(36-4(1)(12)))/(2(1))
  4. [Quadratic Formula] [√Radical] Multiply:
    \displaystyle x=(6\pm√(36-48))/(2(1))
  5. [Quadratic Formula] [√Radical] Subtract:
    \displaystyle x=(6\pm√(-12))/(2(1))
  6. [Quadratic Formula] [√Radical] Factor:
    \displaystyle x=(6\pm √(-1) \cdot √(12))/(2(1))
  7. [Quadratic Formula] [√Radicals] Simplify:
    \displaystyle x=(6 \pm 2i√(3))/(2(1))
  8. [Quadratic Formula] [Fraction - Denominator] Multiply:
    \displaystyle x=(6 \pm 2i√(3))/(2)
  9. [Quadratic Formula] [Fraction - Numerator] Factor:
    \displaystyle x=(2(3 \pm i√(3)))/(2)
  10. [Quadratic Formula] [Fraction] Divide:
    \displaystyle x = 3 \pm i√(3)
User Schoel
by
3.3k points