The sum of the functions f(x) = 3x^2 + 6x - 5 and g(x) = 4x^3 - 5x^2 + 6 is given by (f + g)(x) = 4x^3 - 2x^2 + 6x + 1. The correct answer is option B.
To find (f + g)(x), you need to add the two functions f(x) and g(x):
(f + g)(x) = f(x) + g(x)
f(x) = 3x^2 + 6x - 5
g(x) = 4x^3 - 5x^2 + 6
Now, add the two functions:
(f + g)(x) = (3x^2 + 6x - 5) + (4x^3 - 5x^2 + 6)
Combine like terms:
(f + g)(x) = 4x^3 - 2x^2 + 6x + 1
So, the correct answer is:
(f + g)(x) = 4x^3 - 2x^2 + 6x + 1
Therefore, according to the given question, the correct answer would be option B.
The complete question is:
f(x) = 3x ^ 2 + 6x - 5
g(x) = 4x ^ 3 - 5x ^ 2 + 6
Find (f + g)(x)
A. (f + g)(x) = - 4x ^ 3 + 8x ^ 2 + 6x - 11
B. (f + g)(x) = 4x ^ 3 - 2x ^ 2 + 6x + 1
C. (f + g)(x) = 4x ^ 3 + 3x ^ 2 + 11x + 1
D. (f + g)(x) = 7x ^ 3 + x ^ 2 + 1