To prepare a buffer solution with a pH of 3.70 using a 0.90 M solution of formic acid, 20.70 g of sodium formate must be dissolved in 380.0 cm³.
To find the mass of sodium formate needed to prepare a buffer solution with a specific pH, we'll use the Henderson-Hasselbalch equation, which relates the pH of a buffer solution to the concentration of its acid and conjugate base. The equation is given by:
![\[ \text{pH} = \text{pKa} + \log\left(\frac{[\text{A⁻}]}{[\text{HA}]}\right) \]](https://img.qammunity.org/2024/formulas/chemistry/college/atzbxtpb7mxbpg9elci5izced861151oau.png)
For a solution of formic acid
and sodium formate
the pKa for formic acid is 3.75.
Given pH = 3.70 and
, we can rearrange the Henderson-Hasselbalch equation to solve for
:
![\[ \frac{[\text{A⁻}]}{[\text{HA}]} = 10^{\text{pH} - \text{pKa}} \]](https://img.qammunity.org/2024/formulas/chemistry/college/irhyeu9n0by3hxpd33zczrg31vfyo722hn.png)
![\[ \frac{[\text{A⁻}]}{[\text{HA}]} = 10^(3.70 - 3.75) \]](https://img.qammunity.org/2024/formulas/chemistry/college/nxpbfv5q8dun5evhlu2swqkorpawhki08i.png)
![\[ \frac{[\text{A⁻}]}{[\text{HA}]} = 0.56 \]](https://img.qammunity.org/2024/formulas/chemistry/college/pd1arudkaj80foahbik0d7fqut5q919fxh.png)
Now, we can use the molarity
and volume
relationship to find the moles of formic acid
in 380.0 cm³:
![\[ \text{moles of } HA = M * V \]](https://img.qammunity.org/2024/formulas/chemistry/college/5lcucomqo25w4tv87jnoy8hilqyr9rlc38.png)
![\[ \text{moles of } HA = 0.90 \, \text{mol/L} * (380.0 * 10^(-3) \, \text{L}) \]](https://img.qammunity.org/2024/formulas/chemistry/college/kgqtz1uspcwvycraay234ku37kvvzedsmt.png)
![\[ \text{moles of } HA = 0.342 \, \text{mol} \]](https://img.qammunity.org/2024/formulas/chemistry/college/fvgy633obhz34hdc6wla6955gyramdjlu3.png)
Since
![\(\frac{[\text{A⁻}]}{[\text{HA}]} = 0.56\), the moles of \(A^-\) is \(0.56 * 0.342 \, \text{mol} = 0.191 \, \text{mol}\).](https://img.qammunity.org/2024/formulas/chemistry/college/21nibjdgo847b9exorqpzmlg39nnkie3qe.png)
Now, calculate the mass of sodium formate
using its molar mass:
![\[ \text{Mass of } A^- = \text{moles of } A^- * \text{Molar mass of } A^- \]](https://img.qammunity.org/2024/formulas/chemistry/college/41pt4cnrflf5e2qzljt10e775r6uyo0bbh.png)
![\[ \text{Mass of } A^- = 0.191 \, \text{mol} * 68.01 \, \text{g/mol} \]](https://img.qammunity.org/2024/formulas/chemistry/college/z9faq3g1wmaspf5u3erb1z8lns8umlm83x.png)
![\[ \text{Mass of } A^- \approx 12.97 \, \text{g} \]](https://img.qammunity.org/2024/formulas/chemistry/college/ojkq1yzv085e9t4zyqdmiluwxsublev5va.png)
Therefore, approximately 12.97 grams of sodium formate must be dissolved in 380.0 cm³ of a 0.90 M solution of formic acid to prepare a buffer solution with pH 3.70.