210k views
20 votes
Find the coordinates of the turning point when y=5x^3 - 6x^2 - 4X + 8

User MarZab
by
4.7k points

1 Answer

7 votes

Given:

The equation is


y=5x^3-6x^2-4x+8

To find:

The coordinates of the turning point.

Solution:

We have,


y=5x^3-6x^2-4x+8

Differentiate with respect to x.


(dy)/(dx)=5(3x^2)-6(2x)-4(1)+(0)


(dy)/(dx)=15x^2-12x-4

For the turning points
(dy)/(dx)=0.


15x^2-12x-4=0

Using quadratic formula:


x=(-b\pm √(b^2-4ac))/(2a)


x=(-(-12)\pm √((-12)^2-4(15)(-4)))/(2(15))


x=(12\pm √(144+240))/(30)


x=(12\pm √(384))/(30)

Now,


x=(12+√(384))/(30)\text{ and }x=(12-√(384))/(30)


x\approx 1.053\text{ and }x\approx-0.253

Putting x=1.053 in the given equation, we get


y=5(1.053)^3-6(1.053)^2-4(1.053)+8


y\approx 2.973

Putting x=−0.253 in the given equation, we get


y=5(-0.253)^3-6(-0.253)^2-4(-0.253)+8


y\approx 8.547

Therefore, the turning points are (1.053,2.973) and (-0.253, 8.547).

User James Ralston
by
4.9k points