Final Answer:
Emergency lighting, with its battery packs fully charged, is available for approximately 90 minutes.
Step-by-step explanation:
Emergency lighting systems are designed to provide illumination during power outages or emergencies. The duration for which emergency lighting remains operational depends on the capacity of the battery packs installed in the system. In this case, the fully charged battery packs can sustain the emergency lighting for 90 minutes.
The calculation for the duration of emergency lighting is straightforward. The capacity of the battery packs is the key factor. If we denote the battery capacity in ampere-hours (Ah) and the power consumption of the emergency lighting system in amperes (A), then the duration (D) in hours can be calculated using the formula:
![\[ D = (Battery \ Capacity)/(Power \ Consumption) \]](https://img.qammunity.org/2024/formulas/engineering/college/vqxm15jz510neio85cu7xc23owz6bc8rmd.png)
In this context, the capacity of the battery packs is multiplied by 60 to convert it from ampere-hours to minutes. Therefore, the equation becomes:
![\[ D = (Battery \ Capacity * 60)/(Power \ Consumption) \]](https://img.qammunity.org/2024/formulas/engineering/college/ci1hnhdwx7s05zu5jbel1wjdchoaga7x1x.png)
By substituting the given values, we can calculate the duration. For instance, if the battery capacity is 90 ampere-hours and the power consumption is 1 ampere, the calculation would be:
![\[ D = (90 * 60)/(1) = 90 \ minutes \]](https://img.qammunity.org/2024/formulas/engineering/college/1w89d3ywzddbtn24d4xhmce6jn6o07u43w.png)
Hence, with fully charged battery packs, the emergency lighting is available for approximately 90 minutes.