40.1k views
3 votes
In parallelogram ABCD, base AD is 15 and side AB is 8. What are the height and area of paralelogram ABCD if mDAB is 20?

User Litanhua
by
3.1k points

1 Answer

6 votes

Explanation:


\underline{ \underline{ \large{ \tt{G\: I \: V \: E \: N}}}} :

  • AD = 15 , AB = 8 ,
    \angle DAB


\underline{ \underline{ \large{ \tt{T \: O \: \: F\: I \: N \: D}}}} :

  • Height & Area of the given parallelogram


\underline{ \underline{ \large{ \tt{S \: O</p><p> \: L \: U \: T\: I\: O \: N}}}} :

In right angled triangle ABE :

  • Hypotenuse ( h ) = 8
  • Perpendicular ( p ) = h [ height ]

  • \theta = 20°

Now , Using trigonometric ratio :


\large{ \tt{Sin \theta \: = \: (Perpendicular)/(Hypotenuse) }}

Plug the known values :


\large{ \tt{ Sin(20) = (h)/(8) }}


\large{ \tt{0.34 = (h)/(8)}}


\large{ \tt{h = 0.34 * 8}}


\large{ \tt{h = 2.72}}

Now , We have :

  • Base ( b ) = 15
  • Height ( h ) = 2.72

Finding the area of a parallelogram whose base and height are 15 and 2.72 respectively :


\underline{ \underline{ \text{Area \: of \: parallelogram = \tt{b *\: h}}}}


\large{ \tt{A = 15 *2.72}}


\large{ \tt{A = 40.8 \: {units}^(2) }}

Hence , Our final answer :


\large{ \boxed{ \sf{Height \: ( \: h \: ) = 2.72 \: units}}}


\large{ \boxed{ \sf{Area \: of \: parallelogram \: ( \:A \: ) = \: 40.8 \: {units}^(2) }}}

Hope I helped ! ♡

Have a wonderful day / night ! ツ

#
\underbrace{ \tt{Carry \: On \: Learning}} !! ✎

▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁

In parallelogram ABCD, base AD is 15 and side AB is 8. What are the height and area-example-1
User Sahil M
by
3.5k points