415,917 views
3 votes
3 votes
H(t)= -16t^2+150+35 algebra question

User Basse Nord
by
2.8k points

2 Answers

23 votes
23 votes

Answer:

t = sqrt(185)/4 or t = -sqrt(185)/4

Explanation:

Solve for t over the real numbers:

-16 t^2 + 35 + 150 = 0

-16 t^2 + 35 + 150 = -16 t^2 + 185:

-16 t^2 + 185 = 0

Multiply both sides by -1:

16 t^2 - 185 = 0

t = (0 ± sqrt(0^2 - 4×16 (-185)))/(2×16) = ( ± sqrt(11840))/32:

t = sqrt(11840)/32 or t = (-sqrt(11840))/32

sqrt(11840) = sqrt(64×5×37) = sqrt(2^6×5×37) = 2^3sqrt(5×37) = 8 sqrt(185):

t = (8 sqrt(185))/32 or t = (-8 sqrt(185))/32

(8 sqrt(185))/32 = (8 sqrt(185))/(8×4) = (sqrt(185))/4:

t = sqrt(185)/4 or t = (-8 sqrt(185))/32

(8 (-sqrt(185)))/32 = (8 (-sqrt(185)))/(8×4) = -(sqrt(185))/4:

Answer: t = sqrt(185)/4 or t = -sqrt(185)/4

User Ben Thul
by
3.1k points
14 votes
14 votes

Answer:


t=(75+√(6185))/(16),\quad t=(75-√(6185))/(16)

Explanation:

Given quadratic function:


h(t)=-16t^2+150t+35

To solve the quadratic, set it to zero and solve for t using the quadratic formula.


\boxed{\begin{minipage}{4 cm}\underline{Quadratic Formula}\\\\$x=(-b \pm √(b^2-4ac))/(2a)$\\\\when $ax^2+bx+c=0$ \\\end{minipage}}

Compare the coefficients of the given quadratic function:

  • a = -16
  • b = 150
  • c = 35

Substitute the values of a, b and c into the quadratic formula:


t=(-150 \pm √(150^2-4(-16)(35)))/(2(-16))

Simplify:


t=(-150 \pm √(22500+2240))/(-32)


t=(150 \pm √(24740))/(32)

Rewrite 24740 as 2² · 6185:


t=(150 \pm √(2^2 \cdot 6185))/(32)


\textsf{Apply the radical rule:} \quad √(ab)=√(a)√(b)


t=(150 \pm √(2^2) √(6185))/(32)


\textsf{Apply the radical rule:} \quad √(a^2)=a, \quad a \geq 0


t=(150 \pm 2 √(6185))/(32)

Divide all terms by 2:


t=(75\pm √(6185))/(16)

Therefore, the exact solutions to the quadratic equation are:


\boxed{\boxed{t=(75+√(6185))/(16),\quad t=(75-√(6185))/(16)}}

User CAA
by
3.7k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.