The radius increased by
miles.
Let's denote the initial radius as
and the increased radius as
. The formula for the area of a circle is
. The increased area is given as
. So, we have:
![\[A_1 = \pi r_1^2\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/lgico70gkofw94xdut5jcsw85xcvediz0x.png)
![\[A_2 = \pi^2 + 12\pi r_2 + 36\pi\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/rjoqizeu8z9yh9pq1v7ow52wuq6j44e8uj.png)
The increase in the area is given by:
![\[ \Delta A = A_2 - A_1 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/9ly575wn31hu8dgabj8yn2hsgcbjq0t4yn.png)
Substituting the area formulas:
![\[ \Delta A = (\pi^2 + 12\pi r_2 + 36\pi) - (\pi r_1^2) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/mm8mw8kkhgnsjp830hn7dbrqvhqpcuoyxs.png)
To find the increase in radius, we set
equal to the area formula for a circle:
![\[ \pi r_2^2 - \pi r_1^2 = \pi^2 + 12\pi r_2 + 36\pi - \pi r_1^2 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/rkgh2pbqzmfeaso268b40zwhipb4oogkv4.png)
Solving for
:
![\[ r_2^2 - r_1^2 = \pi + 12r_2 + 36 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/c5g9rumqc1ppbu2qsahb3vs8wbsvwjav69.png)
Rearranging:
![\[ r_2^2 - 12r_2 = \pi + 36 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/day89sxt9e9jnle0vy0tsprb4oijqnw310.png)
Completing the square:
![\[ (r_2 - 6)^2 = \pi + 36 + 36 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/lrxf3bnm7xfz9b062bznifruf42rwynquo.png)
![\[ (r_2 - 6)^2 = \pi + 72 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/c9is1cy2j9vm2239k2tismooope90ye2l2.png)
![\[ r_2 - 6 = √(\pi + 72) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/c5njcd7gocaan024q1c0c9zpgjhklp9y2u.png)
Finally, solving for
:
![\[ r_2 = 6 + √(\pi + 72) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/gs1l9zl8pvxv0qbbxbbt3px9w4b9s5tzbt.png)