The factored form of the quadratic expressions are: a. (x + 1)(x + 6) b. (x - 1)(x - 6) c. (x - 2)(x - 3) d. (x + 2)(x + 3).
How to rewrite in factored form?
The factorization process for each quadratic expression is explained below:
a. x² + 7x + 6
x² + 6x + x + 6
(x² + 6x) + (x + 6)
Bring out the common factors:
x(x + 6) +1(x + 6)
(x + 1)(x + 6)
b. x² - 7x + 6
x² - 6x - x + 6
(x² - 6x) - (x + 6)
Bring out the common factors:
x(x - 6) -1(x - 6)
(x - 1)(x - 6)
c. x² - 5x + 6
x² - 3x - 2x + 6
(x² - 3x) - (2x + 6)
x(x - 3) -2(x - 3)
(x - 2)(x - 3)
d. x² + 5x + 6
x² + 3x + 2x + 6
(x² + 3x) + (2x + 6)
x(x + 3) +2(x + 3)
(x + 2)(x + 3)
Complete Question:
These quadratic expressions are given in standard form. Rewrite each expression in factored form. If you get stuck, try drawing a diagram.
a. x² + 7x + 6
b. x² - 7x + 6
c. x² - 5x + 6
d. x² + 5x + 6