Projectile launched at 110 m/s, 35° angle. Max height: 203.06 m, time to max height: 6.45 s, total flight time: 12.90 s, horizontal range: 1162.72 m.
To solve these problems, we can use the kinematic equations of motion for projectile motion. The initial velocity \(v_0\) can be decomposed into horizonta
components using trigonometric functions. The acceleration in the vertical direction
on the surface of the Earth.
1. **Maximum Height (\(H\)):**
- The formula for the maximum height is given by:
![\[ H = \frac{{v_(0y)^2}}{{2g}} \]](https://img.qammunity.org/2024/formulas/mathematics/college/e8hfgsgvwmuhpeymsnnx9t8u71488wcqzn.png)
2. **Time to Reach Maximum Height

- The time it takes to reach the maximum height is given by:
![\[ t_{\text{max}} = \frac{{v_(0y)}}{{g}} \]](https://img.qammunity.org/2024/formulas/mathematics/college/xpisb2ov68s98kylol01gvxb2unfp37sl6.png)
3. **Total Time of Flight (\(T\)):**
- The total time of flight is twice the time to reach the maximum height:
![\[ T = 2 * t_{\text{max}} \]](https://img.qammunity.org/2024/formulas/mathematics/college/5go9etjnmfg5w8w2pje81uo525j1j9ayky.png)
4. **Horizontal Range (\(R\)):**
- The horizontal range is given by:
![\[ R = v_(0x) * T \]](https://img.qammunity.org/2024/formulas/mathematics/college/kte9dxuzej7clqfe97twpydw99ez5mtbtr.png)
Let's calculate these values using the given information:
Given:


First, we decompose the initial velocity into horizontal and vertical components:
![\[ v_(0x) = v_0 * \cos(\theta) \]\[ v_(0y) = v_0 * \sin(\theta) \]](https://img.qammunity.org/2024/formulas/mathematics/college/bpftp54zg7roelxdlum1kjkg6uttfldo6g.png)
Now, let's calculate:
![\[ v_(0x) = 110 \ \text{m/s} * \cos(35^\circ) \]\[ v_(0y) = 110 \ \text{m/s} * \sin(35^\circ) \]\[ g = 9.8 \ \text{m/s}^2 \]](https://img.qammunity.org/2024/formulas/mathematics/college/lsg0bgjysqtb7mtza5el84f9j3f2f7fc7f.png)
1. **Maximum Height (\(H\)):**
![\[ H = \frac{{v_(0y)^2}}{{2g}} \]](https://img.qammunity.org/2024/formulas/mathematics/college/e8hfgsgvwmuhpeymsnnx9t8u71488wcqzn.png)
2. **Time to Reach Maximum Height (\(t_{\text{max}})\):**
![\[ t_{\text{max}} = \frac{{v_(0y)}}{{g}} \]](https://img.qammunity.org/2024/formulas/mathematics/college/xpisb2ov68s98kylol01gvxb2unfp37sl6.png)
3. **Total Time of Flight (\(T\)):**
![\[ T = 2 * t_{\text{max}} \]](https://img.qammunity.org/2024/formulas/mathematics/college/5go9etjnmfg5w8w2pje81uo525j1j9ayky.png)
4. **Horizontal Range (\(R\)):**
![\[ R = v_(0x) * T \]](https://img.qammunity.org/2024/formulas/mathematics/college/kte9dxuzej7clqfe97twpydw99ez5mtbtr.png)
Let's calculate these values.
![\[ v_(0x) = 110 \ \text{m/s} * \cos(35^\circ) \approx 90.16 \ \text{m/s} \]](https://img.qammunity.org/2024/formulas/mathematics/college/3ezfjss0y4ymu57y1gw6qw9xywv9xe6lh6.png)
![\[ v_(0y) = 110 \ \text{m/s} * \sin(35^\circ) \approx 63.15 \ \text{m/s} \]](https://img.qammunity.org/2024/formulas/mathematics/college/rwi256ngm04h655993q70ugtkh85ftqqph.png)
![\[ g = 9.8 \ \text{m/s}^2 \]](https://img.qammunity.org/2024/formulas/mathematics/college/8twpw374ovacde3jyk2fpxh1fuk27puhtu.png)
1. **Maximum Height (\(H\)):**
![\[ H = \frac{{v_(0y)^2}}{{2g}} \]](https://img.qammunity.org/2024/formulas/mathematics/college/e8hfgsgvwmuhpeymsnnx9t8u71488wcqzn.png)
![\[ H = \frac{{63.15^2}}{{2 * 9.8}} \approx 203.06 \ \text{m} \]](https://img.qammunity.org/2024/formulas/mathematics/college/42xcqxij3l5lc1wc2b8bnrq3r5vovbslsr.png)
2. **Time to Reach Maximum Height (\(t_{\text{max}})\):**
![\[ t_{\text{max}} = \frac{{v_(0y)}}{{g}} \]](https://img.qammunity.org/2024/formulas/mathematics/college/xpisb2ov68s98kylol01gvxb2unfp37sl6.png)
![\[ t_{\text{max}} = \frac{{63.15}}{{9.8}} \approx 6.45 \ \text{s} \]](https://img.qammunity.org/2024/formulas/mathematics/college/3fme1k4fg4vvxut6omxb0cegdj8164iu3x.png)
3. **Total Time of Flight (\(T\)):**
![\[ T = 2 * t_{\text{max}} \]](https://img.qammunity.org/2024/formulas/mathematics/college/5go9etjnmfg5w8w2pje81uo525j1j9ayky.png)
![\[ T = 2 * 6.45 \approx 12.90 \ \text{s} \]](https://img.qammunity.org/2024/formulas/mathematics/college/d9ae4u8gjjdru5rmwiby4w2gywpq6i3ktb.png)
4. **Horizontal Range (\(R\)):**
![\[ R = v_(0x) * T \]](https://img.qammunity.org/2024/formulas/mathematics/college/kte9dxuzej7clqfe97twpydw99ez5mtbtr.png)
![\[ R = 90.16 \ \text{m/s} * 12.90 \ \text{s} \approx 1162.72 \ \text{m} \]](https://img.qammunity.org/2024/formulas/mathematics/college/clhscm7ps81452on01ggqr4cnv89b4dxc1.png)
So, the answers are:
1. Maximum Height (\(H\)) ≈ 203.06 m
2. Time to Reach Maximum Height (\(t_{\text{max}}\)) ≈ 6.45 s
3. Total Time of Flight (\(T\)) ≈ 12.90 s
4. Horizontal Range (\(R\)) ≈ 1162.72 m