81.2k views
5 votes
Una máquina lanza un proyectil a una velocidad de 110m/s con ángulo de 35 calcular

Altura Max
Tiempo en la max altura
Tiempo total del vuelo
Alcance logrado

User BTakacs
by
7.7k points

1 Answer

2 votes

Projectile launched at 110 m/s, 35° angle. Max height: 203.06 m, time to max height: 6.45 s, total flight time: 12.90 s, horizontal range: 1162.72 m.

To solve these problems, we can use the kinematic equations of motion for projectile motion. The initial velocity \(v_0\) can be decomposed into horizonta
l (\(v_(0x)\)) and vertical (\(v_(0y)\))components using trigonometric functions. The acceleration in the vertical direction
(\(a_y\)) is usually taken as the gravitational acceleration (\(g\)), which is approximately \(9.8 \ \text{m/s}^2\) on the surface of the Earth.

1. **Maximum Height (\(H\)):**

- The formula for the maximum height is given by:


\[ H = \frac{{v_(0y)^2}}{{2g}} \]

2. **Time to Reach Maximum Height
(\(t_{\text{max}})\):**

- The time it takes to reach the maximum height is given by:


\[ t_{\text{max}} = \frac{{v_(0y)}}{{g}} \]

3. **Total Time of Flight (\(T\)):**

- The total time of flight is twice the time to reach the maximum height:


\[ T = 2 * t_{\text{max}} \]

4. **Horizontal Range (\(R\)):**

- The horizontal range is given by:


\[ R = v_(0x) * T \]

Let's calculate these values using the given information:

Given:


- Initial velocity (\(v_0\)) = \(110 \ \text{m/s}\)


- Launch angle (\(\theta\)) = \(35^\circ\)

First, we decompose the initial velocity into horizontal and vertical components:


\[ v_(0x) = v_0 * \cos(\theta) \]\[ v_(0y) = v_0 * \sin(\theta) \]

Now, let's calculate:


\[ v_(0x) = 110 \ \text{m/s} * \cos(35^\circ) \]\[ v_(0y) = 110 \ \text{m/s} * \sin(35^\circ) \]\[ g = 9.8 \ \text{m/s}^2 \]

1. **Maximum Height (\(H\)):**


\[ H = \frac{{v_(0y)^2}}{{2g}} \]

2. **Time to Reach Maximum Height (\(t_{\text{max}})\):**


\[ t_{\text{max}} = \frac{{v_(0y)}}{{g}} \]

3. **Total Time of Flight (\(T\)):**


\[ T = 2 * t_{\text{max}} \]

4. **Horizontal Range (\(R\)):**


\[ R = v_(0x) * T \]

Let's calculate these values.


\[ v_(0x) = 110 \ \text{m/s} * \cos(35^\circ) \approx 90.16 \ \text{m/s} \]


\[ v_(0y) = 110 \ \text{m/s} * \sin(35^\circ) \approx 63.15 \ \text{m/s} \]


\[ g = 9.8 \ \text{m/s}^2 \]

1. **Maximum Height (\(H\)):**


\[ H = \frac{{v_(0y)^2}}{{2g}} \]


\[ H = \frac{{63.15^2}}{{2 * 9.8}} \approx 203.06 \ \text{m} \]

2. **Time to Reach Maximum Height (\(t_{\text{max}})\):**


\[ t_{\text{max}} = \frac{{v_(0y)}}{{g}} \]


\[ t_{\text{max}} = \frac{{63.15}}{{9.8}} \approx 6.45 \ \text{s} \]

3. **Total Time of Flight (\(T\)):**


\[ T = 2 * t_{\text{max}} \]


\[ T = 2 * 6.45 \approx 12.90 \ \text{s} \]

4. **Horizontal Range (\(R\)):**


\[ R = v_(0x) * T \]


\[ R = 90.16 \ \text{m/s} * 12.90 \ \text{s} \approx 1162.72 \ \text{m} \]

So, the answers are:

1. Maximum Height (\(H\)) ≈ 203.06 m

2. Time to Reach Maximum Height (\(t_{\text{max}}\)) ≈ 6.45 s

3. Total Time of Flight (\(T\)) ≈ 12.90 s

4. Horizontal Range (\(R\)) ≈ 1162.72 m

User LeAthlon
by
7.3k points