312,049 views
21 votes
21 votes
[SOLVED] Multiply: mc001-1. jpg

❌ mc001-2. jpg
✔️ mc001-3. jpg
❌ mc001-4. jpg
❌ mc001-5. jpg

[SOLVED] Multiply: mc001-1. jpg ❌ mc001-2. jpg ✔️ mc001-3. jpg ❌ mc001-4. jpg ❌ mc-example-1
User Promo
by
3.3k points

2 Answers

17 votes
17 votes

Answer:

B

Explanation:

User Square
by
3.0k points
10 votes
10 votes

Answer:

(b) 32x²∛(2x) -8x³

Explanation:

You want to simplify the radical expression ...

4x∛(4x²)(2∛(32x²) -x∛(2x))

Radical rules

The relevant rules of radicals are ...

∛(a³b) = a∛b

(∛a)(∛b) = ∛(ab)

Simplify

We can eliminate the parentheses using the distributive property.


4x\sqrt[3]{4x^2}\left(2\sqrt[3]{32x^2}-x\sqrt[3]{2x}\right)=4x\sqrt[3]{4x^2}\cdot2\sqrt[3]{32x^2}-4x\sqrt[3]{4x^2}\cdot x\sqrt[3]{2x}\\\\=8x\sqrt[3]{128x^4}-4x^2\sqrt[3]{8x^3}=8x\sqrt[3]{(4x)^3\cdot2x}-4x^2\sqrt[3]{(2x)^3}\\\\=(8x)(4x)\sqrt[3]{2x}-(4x^2)(2x)=\boxed{32x^2\sqrt[3]{2x}-8x^3}\qquad\text{choice B}

<95141404393>

User Tuhin Kanti Sharma
by
3.1k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.