148k views
16 votes
If |v|= 11, |w|= 23, |v-w|= 30, find |v+w|​

1 Answer

10 votes

Answer:


|v+w|=20

Step-by-step explanation:

We are given that

|v|=11

|w|=23

|v-w|=30

We have to find the value of |v+w|

|a-b|^2=(a+b)\cdot (a+b)=a^2+b^2-2|a||b|cos\theta

Using the formula


(30)^2=(11)^2+(23)^2-2(11)(23)cos\theta


900=121+529-506cos\theta


900-121-529=-506cos\theta


250=-506cos\theta


cos\theta=-(250)/(506)


|a+b|^2=|a|^2+|b|^2+2a\cdot bcos\theta

Using the formula


|v+w|^2=(11)^2+(23)^2+2(11)(23)* (-(250)/(506))


|v+w|^2=400


|v+w|^2=(20)^2


|v+w|=20

User Abilash
by
3.6k points