Final answer:
To calculate the drag on a smooth 50-cm-diameter sphere when subjected to a 280 kPa atmospheric airflow, you can use the drag force formula F = 0.5 * C * p * A * v^2. Calculate the cross-sectional area of the sphere using A = pi * r^2, then substitute the values into the drag force formula with the given velocity, density of the fluid, and drag coefficient.
Step-by-step explanation:
To calculate the drag on a spherical object, we can use the formula: F = 0.5 * C * p * A * v^2, where F is the drag force, C is the drag coefficient, p is the density of the fluid, A is the cross-sectional area facing the fluid, and v is the velocity of the object. In this case, we have a smooth 50-cm-diameter sphere, so we can calculate the cross-sectional area using the formula: A = pi * r^2, where r is the radius of the sphere.
Given that the diameter of the sphere is 50 cm, the radius would be 25 cm (0.25 m). Substitute the values into the formula to find the cross-sectional area. Then, substitute the obtained values into the drag force formula along with the velocity and the given values for the density of the fluid and the drag coefficient to find the drag force.