The temperature of the two-level system is approximately 0.5235 K.
The Boltzmann distribution describes the population of particles in different energy states at a given temperature. For a two-level system with energy separation
, the ratio of the populations
is given by:
![$\[ (N_2)/(N_1) = e^{-(\Delta E)/(kT)} \]](https://img.qammunity.org/2024/formulas/chemistry/college/cvy7lgemgomvcvw75uod1x7khpawh8d8m7.png)
where:
and
are the populations of the lower and upper states, respectively.
is the energy separation between the two states.
is the Boltzmann constant
.
is the temperature in Kelvin.
Given that the energy separation is 400 per centimeter, we need to convert it to electron volts (eV). The conversion factor is
.
![\[ \Delta E = 400 \, \text{cm}^(-1) * 1.2398 * 10^(-4) \, \text{eV/cm}^(-1) \]](https://img.qammunity.org/2024/formulas/chemistry/college/gn7klhrzsi5zhg48qi08rqt18vyq45tlyy.png)
![\[ \Delta E = 0.049592 \, \text{eV} \]](https://img.qammunity.org/2024/formulas/chemistry/college/vm6zkbsjww0aal472khhc74zhmf3flknsl.png)
Now, we can set up the equation using the given information that the population of the upper state is one-third of the lower state
and solve for T.
![$\[ (1)/(3) = e^{-(\Delta E)/(kT)} \]](https://img.qammunity.org/2024/formulas/chemistry/college/wqucjb4k8mznzyrbhdxno8o91t8yamqmxn.png)
![\[ T = -(\Delta E)/(k \ln\left((1)/(3)\right)) \]](https://img.qammunity.org/2024/formulas/chemistry/college/1kcdobc6uvzyw5a58du2z9ob98ropkjusn.png)
![$\[ T = -\frac{0.049592 \, \text{eV}}{(8.617333262145 * 10^(-5) \, \text{eV/K}) \ln\left((1)/(3)\right)} \]](https://img.qammunity.org/2024/formulas/chemistry/college/stpo8c5954lph1xr25oy10036sdgnlttg5.png)
![$\[ T \approx -\frac{0.049592 \, \text{eV}}{(8.617333262145 * 10^(-5) \, \text{eV/K}) * (-1.09861228867)} \]](https://img.qammunity.org/2024/formulas/chemistry/college/w5vrtpkbt2b7dx28y70vo7nwy0dhfgtue9.png)
![\[ T \approx (0.049592)/(0.09465100485) \]](https://img.qammunity.org/2024/formulas/chemistry/college/9q3w45jlb6e6o6cnh6wq1kjf6ek0fmqe2g.png)
![\[ T \approx 0.5235 \, \text{K} \]](https://img.qammunity.org/2024/formulas/chemistry/college/89wli9arkwquu2gzmshw5rmmt3w5r3mxps.png)
So, the temperature of the two-level system is approximately 0.5235 K.
The complete question: Calculate the temperature of a two-level system of energy separation equivalent to 400 per centimeter when the population of the upper state is one-third of the lower state.