175k views
4 votes
Multiplying binomials assignment multiply.
(1/2y-50)(3/5y+10)

User BitNinja
by
8.4k points

1 Answer

4 votes

The expression
\(((1)/(2y) - 50)((3)/(5y) + 10)\) simplifies to
\((3)/(10y^2) - (25)/(y) - 500\) after distribution, simplification, and combining like terms.

the expression
\(((1)/(2y) - 50)((3)/(5y) + 10}\) ) the distributive property.

Given expression:
\(((1)/(2y) - 50)((3)/(5y) + 10)\)

First, let's distribute
\((1)/(2y)\) to both terms inside the second parenthesis, and then distribute
\(-50\) to both terms inside the second parenthesis:


\((1)/(2y) * (3)/(5y) + (1)/(2y) * 10 - 50 * (3)/(5y) - 50 * 10\)

Now, perform the multiplication:


\((3)/(10y^2) + (10)/(2y) - (150)/(5y) - 500\)

Simplify each term:


\((3)/(10y^2) + (5)/(y) - (30)/(y) - 500\)

Combine like terms:


\((3)/(10y^2) - (25)/(y) - 500\)

Hence, after simplification, the expression
\(((1)/(2y) - 50)((3)/(5y) + 10)\) simplifies to
\((3)/(10y^2) - (25)/(y) - 500\).

complete the question

Solve the binomial. (1/2y - 50)(3/5y + 10)

User Bootsz
by
8.2k points

No related questions found