Certainly! Here are the terminal points for each operation:
(a)

(b)

(c)

(d)

Given:
on the unit circle.
(a)
The terminal point
is already given as

(b)
To find this, add 4 to both the
and
coordinates of
:
Given

Add 4 to both
and
:
![\[4 + t = \left(4 + (4)/(7), 4 + (√(33))/(7)\right)\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/mmr3t4jxbcv9zcwb1bzo37avp8djtzs6tl.png)
![\[4 + t = \left((28)/(7) + (4)/(7), (28)/(7) + (√(33))/(7)\right)\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/ke5874d1faq86dxm58klqfr1ewhnrjrhrz.png)
![\[4 + t = \left((32)/(7), (28 + √(33))/(7)\right)\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/t99ayfr8bw1ifc0aogh02pyxln1aeos3kd.png)
(c)
To find the negative of
, negate both the
and
coordinates:
Given

Negate both
and
:
![\[-t = \left(-(4)/(7), -(√(33))/(7)\right)\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/aj985q21hwkc14e8q3sgt424yxvx218bav.png)
(d)
Multiplying
by
involves multiplying both coordinates by
:
Given

Multiply both coordinates by
:
![\[\pi t = \left(\pi \cdot (4)/(7), \pi \cdot (√(33))/(7)\right)\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/9sz51corckajkwzf0rgzokq3dhklzrsz9j.png)
![\[\pi t = \left((4\pi)/(7), (\pi√(33))/(7)\right)\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/83rpd1wzwvvhgvt8p9pgfd94ruvvj71m1h.png)
Therefore, the terminal points for each operation are:
(a)

(b)

(c)

(d)
