The expression
can be rewritten using the double-angle identity as
. Therefore, the answer is C.
To rewrite
using a double-angle identity, we can use the formula
. In this case,
. So,
![\[ 2 \cos 75^\circ \sin 75^\circ = 2 \cdot \sin 2 \cdot (75^\circ) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/z7qz9vu75e3k7zntkg1sack0uyis6kj4b3.png)
Now, the double-angle identity for sine is
. Therefore,
![\[ 2 \cdot \sin 2 \cdot (75^\circ) = \sin (2 \cdot 75^\circ) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/93otf913mv27yqoauhv1iy9u0lvxnlfe1q.png)
Now, simplify the expression inside the sine function:
![\[ \sin (2 \cdot 75^\circ) = \sin 150^\circ \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/naa2eqgo0961u8xwcok3857hxy1pxxd5tj.png)
Therefore, the given expression
can be rewritten as
. Therefore, the correct answer is:
![\[ \text{C.} \ \sin 150^\circ \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/lcivcd5axe3fwvtr26sfdevvddroi329ob.png)