46.8k views
2 votes
Select the correct answer.

Rewrite 2 cos 75° sin 75° using a double-angle identity.
A. 2 sin 75°
B. cos 75°
C. sin 150°
D. cos 150°
E. sin 75°

User PierreD
by
8.0k points

1 Answer

2 votes

The expression
\(2 \cos 75^\circ \sin 75^\circ\) can be rewritten using the double-angle identity as
\(\sin 150^\circ\). Therefore, the answer is C.

To rewrite
\(2 \cos 75^\circ \sin 75^\circ\) using a double-angle identity, we can use the formula
\( \sin 2\theta = 2\sin \theta \cos \theta\). In this case,
\(\theta = 75^\circ\). So,


\[ 2 \cos 75^\circ \sin 75^\circ = 2 \cdot \sin 2 \cdot (75^\circ) \]

Now, the double-angle identity for sine is
\( \sin 2\theta = 2\sin \theta \cos \theta \). Therefore,


\[ 2 \cdot \sin 2 \cdot (75^\circ) = \sin (2 \cdot 75^\circ) \]

Now, simplify the expression inside the sine function:


\[ \sin (2 \cdot 75^\circ) = \sin 150^\circ \]

Therefore, the given expression
\(2 \cos 75^\circ \sin 75^\circ\) can be rewritten as

\(\sin 150^\circ\). Therefore, the correct answer is:


\[ \text{C.} \ \sin 150^\circ \]

User Saurabh Tiwari
by
8.5k points