28.0k views
3 votes
For each of the following pairs of vectors x and y, find the vector projection p of x onto y.

[ -1 ] [ 3 ]
x = [ 1 ] and y = [ -1 ]
[ -2 ] [ 4 ]

1 Answer

6 votes

The vector projection
\( \text{proj}_y(\mathbf{x}) \) of vector
\(\mathbf{x}\) onto vector
\(\mathbf{y}\) is
\(\begin{bmatrix} -(18)/(13) \\ (6)/(13) \\ -(24)/(13) \end{bmatrix}\) given vectors
\(\mathbf{x}\) and \(\mathbf{y}\).

The vector projection
\( \text{proj}_y(\mathbf{x}) \) of vector
\(\mathbf{x}\) onto vector
\(\mathbf{y}\) is given by:


\[ \text{proj}_y(\mathbf{x}) = \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{y}\|^2} \cdot \mathbf{y} \]

Given vectors
\(\mathbf{x}\) and \(\mathbf{y}\):


\[ \mathbf{x} = \begin{bmatrix} -1 \\ 1 \\ -2 \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} 3 \\ -1 \\ 4 \end{bmatrix} \]

1. Calculate the dot product
\(\mathbf{x} \cdot \mathbf{y}\):


\[ \mathbf{x} \cdot \mathbf{y} = (-1)(3) + (1)(-1) + (-2)(4) \]

2. Calculate the norm
(\(\|\mathbf{y}\|\)) of vector
\(\mathbf{y}\):


\[ \|\mathbf{y}\| = √(3^2 + (-1)^2 + 4^2) \]

3. Substitute these values into the formula:


\[ \text{proj}_y(\mathbf{x}) = \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{y}\|^2} \cdot \mathbf{y} \]

Perform the calculations to find the vector projection.


\[ \mathbf{x} = \begin{bmatrix} -1 \\ 1 \\ -2 \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} 3 \\ -1 \\ 4 \end{bmatrix} \]

1. Calculate the dot product
\(\mathbf{x} \cdot \mathbf{y}\):


\[ \mathbf{x} \cdot \mathbf{y} = (-1)(3) + (1)(-1) + (-2)(4) = -3 - 1 - 8 = -12 \]

2. Calculate the norm
(\(\|\mathbf{y}\|\)) of vector
\(\mathbf{y}\):


\[ \|\mathbf{y}\| = √(3^2 + (-1)^2 + 4^2) = √(9 + 1 + 16) = √(26) \]

3. Substitute these values into the formula:


\[ \text{proj}_y(\mathbf{x}) = \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{y}\|^2} \cdot \mathbf{y} \]\[ \text{proj}_y(\mathbf{x}) = (-12)/(26) \cdot \begin{bmatrix} 3 \\ -1 \\ 4 \end{bmatrix} \]

4. Perform the calculation:


\[ \text{proj}_y(\mathbf{x}) = -(6)/(13) \cdot \begin{bmatrix} 3 \\ -1 \\ 4 \end{bmatrix} = \begin{bmatrix} -(18)/(13) \\ (6)/(13) \\ -(24)/(13) \end{bmatrix} \]

Therefore, the vector projection
\( \text{proj}_y(\mathbf{x}) \) of vector
\(\mathbf{x}\) onto vector
\(\mathbf{y}\) is
\(\begin{bmatrix} -(18)/(13) \\ (6)/(13) \\ -(24)/(13) \end{bmatrix}\).

User Sam Alex
by
8.0k points

No related questions found