28.0k views
3 votes
For each of the following pairs of vectors x and y, find the vector projection p of x onto y.

[ -1 ] [ 3 ]
x = [ 1 ] and y = [ -1 ]
[ -2 ] [ 4 ]

1 Answer

6 votes

The vector projection
\( \text{proj}_y(\mathbf{x}) \) of vector
\(\mathbf{x}\) onto vector
\(\mathbf{y}\) is
\(\begin{bmatrix} -(18)/(13) \\ (6)/(13) \\ -(24)/(13) \end{bmatrix}\) given vectors
\(\mathbf{x}\) and \(\mathbf{y}\).

The vector projection
\( \text{proj}_y(\mathbf{x}) \) of vector
\(\mathbf{x}\) onto vector
\(\mathbf{y}\) is given by:


\[ \text{proj}_y(\mathbf{x}) = \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{y}\|^2} \cdot \mathbf{y} \]

Given vectors
\(\mathbf{x}\) and \(\mathbf{y}\):


\[ \mathbf{x} = \begin{bmatrix} -1 \\ 1 \\ -2 \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} 3 \\ -1 \\ 4 \end{bmatrix} \]

1. Calculate the dot product
\(\mathbf{x} \cdot \mathbf{y}\):


\[ \mathbf{x} \cdot \mathbf{y} = (-1)(3) + (1)(-1) + (-2)(4) \]

2. Calculate the norm
(\(\|\mathbf{y}\|\)) of vector
\(\mathbf{y}\):


\[ \|\mathbf{y}\| = √(3^2 + (-1)^2 + 4^2) \]

3. Substitute these values into the formula:


\[ \text{proj}_y(\mathbf{x}) = \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{y}\|^2} \cdot \mathbf{y} \]

Perform the calculations to find the vector projection.


\[ \mathbf{x} = \begin{bmatrix} -1 \\ 1 \\ -2 \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} 3 \\ -1 \\ 4 \end{bmatrix} \]

1. Calculate the dot product
\(\mathbf{x} \cdot \mathbf{y}\):


\[ \mathbf{x} \cdot \mathbf{y} = (-1)(3) + (1)(-1) + (-2)(4) = -3 - 1 - 8 = -12 \]

2. Calculate the norm
(\(\|\mathbf{y}\|\)) of vector
\(\mathbf{y}\):


\[ \|\mathbf{y}\| = √(3^2 + (-1)^2 + 4^2) = √(9 + 1 + 16) = √(26) \]

3. Substitute these values into the formula:


\[ \text{proj}_y(\mathbf{x}) = \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{y}\|^2} \cdot \mathbf{y} \]\[ \text{proj}_y(\mathbf{x}) = (-12)/(26) \cdot \begin{bmatrix} 3 \\ -1 \\ 4 \end{bmatrix} \]

4. Perform the calculation:


\[ \text{proj}_y(\mathbf{x}) = -(6)/(13) \cdot \begin{bmatrix} 3 \\ -1 \\ 4 \end{bmatrix} = \begin{bmatrix} -(18)/(13) \\ (6)/(13) \\ -(24)/(13) \end{bmatrix} \]

Therefore, the vector projection
\( \text{proj}_y(\mathbf{x}) \) of vector
\(\mathbf{x}\) onto vector
\(\mathbf{y}\) is
\(\begin{bmatrix} -(18)/(13) \\ (6)/(13) \\ -(24)/(13) \end{bmatrix}\).

User Sam Alex
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories