The evaluation of ∂u/∂z at (5, 2, 5) for the function u(p, q, r) = p²q² − r yields a value of 780. Therefore, the correct answer is d. 780.
To find ∂u/∂z, we need to differentiate the function u with respect to z while treating x and y as constants. The given function is
, where p = y - z, q = x + z, and r = x + y.
Let's calculate the partial derivatives:
![\[ (\partial u)/(\partial z) = (\partial u)/(\partial p) (\partial p)/(\partial z) + (\partial u)/(\partial q) (\partial q)/(\partial z) + (\partial u)/(\partial r) (\partial r)/(\partial z) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/9hej9vsqs0b38xo0qguomfz13ksw55pf89.png)
Given that
, and r = x + y, we can substitute these into the equation.
![\[ (\partial u)/(\partial z)\[ (\partial u)/(\partial z) = 2p \cdot q^2 \cdot (-1) + 2 \cdot p^2 \cdot q \cdot 1 + (-1) \cdot 1 = -2pq^2 + 2p^2q - 1 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/nqyukso9g24cgk7l0t67d6b9pdh2ny1911.png)
Now, substitute the expressions for p, q, and the given point (x, y, z) into the equation:
![\[ (\partial u)/(\partial z) \Big|_((5,2,5)) = -2(y - z)(x + z)^2 + 2(y - z)^2(x + z) - 1 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/5agtkskr1289abdaepffc371u7qm4cjv0l.png)
Now, substitute the values (x, y, z) = (5, 2, 5) into the expression:
![\[ (\partial u)/(\partial z) \Big|_((5,2,5)) = -2(2 - 5)(5 + 5)^2 + 2(2 - 5)^2(5 + 5) - 1 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/gfi8knfn220xj1pdgynpir8l950ad43ybu.png)
Simplify this expression to get the final result. Calculating this expression yields:
![\[ (\partial u)/(\partial z) \Big|_((5,2,5)) = 780 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/ou1yaey6pp9hnc1ll0cc49kz3xrgfxt657.png)
So, the correct answer is: d. 780