82.4k views
0 votes
Add the matrices.

A
B
5
9
-2
3
A+B
1
4
7
8
-7

User Quetcy
by
7.8k points

1 Answer

2 votes

The calculated number that fills in the blank in the added matrix A + B is 7

How to determine the number that fills in the blank

From the question, we have the following parameters that can be used in our computation:


A = \left[\begin{array}{ccc}2&4&-9\\3&-2&5\end{array}\right]

Also, we have


B = \left[\begin{array}{ccc}3&-1&5\\4&8&2\end{array}\right]

Adding both matrices, we have


A = B= \left[\begin{array}{ccc}2 + 3 & 4 - 1& - 9 + 5\\3 + 4&-2 + 8&5 + 2\end{array}\right]

Evaluate the sum


A + B = \left[\begin{array}{ccc}5&3&-4\\7&6&7\end{array}\right]

By comparing
A + B = \left[\begin{array}{ccc}5&3&-4\\7&6&7\end{array}\right] and
A + B = \left[\begin{array}{ccc}5&3&-4\\?&6&7\end{array}\right], we have

? = 7

Hence, the number that fills in the blank is 7

Question

Add the matrices


A = \left[\begin{array}{ccc}2&4&-9\\3&-2&5\end{array}\right]


B = \left[\begin{array}{ccc}3&-1&5\\4&8&2\end{array}\right]


A + B = \left[\begin{array}{ccc}5&3&-4\\?&6&7\end{array}\right]

What number fills in [?]

User Tya
by
8.0k points