80.4k views
4 votes
Given z = −7 − 3i, rewrite z in trigonometric form. 6.325 (cos 23.199° + isin 23.199°) 7.616(cos 23.199° + isin 23.199°) 6.325(cos 203.199° + isin 203.199°) 7.616(cos 203.199° + isin 203.199°)

1 Answer

6 votes

Answer:

7.616(cos 203.199° + i sin 203.199°)

Explanation:

For
\boxed{z=(Re)+(Im)i}, the trigonometric form =
\boxed{r(cos\theta+isin\theta)}

where:


\boxed{r=√(Re^2+Im^2) }


\boxed{tan\theta=(Im)/(Re) }

Given:

Re = -7

Im = -3


r=√((-7)^2+(-3)^2)


=7.616


tan\theta=(-3)/(-7)


\theta=203.199^o (x and y are negative → Quadrant 3)

Therefore, the trigonometric form =

7.616(cos 203.199° + i sin 203.199°)

User Ray Donnelly
by
8.6k points