Answer:
![a = \{1,4,9,16,25,36,49,64,81,100\}](https://img.qammunity.org/2022/formulas/mathematics/high-school/4ly03ce3om5bu8bw7isjfwfae7vlg1uz58.png)
Explanation:
Given
![ax^2 - 64](https://img.qammunity.org/2022/formulas/mathematics/high-school/j9pyc7iid985unwrgec7t8elvz5rymrusc.png)
Required
Determine possible values of a
For the expression to be a difference of two squares, then a must be a perfect square between 1 and 100 (inclusive).
Let
where
![k \ge 1](https://img.qammunity.org/2022/formulas/mathematics/high-school/rfu2zol91ykbz739szjx2fg0po77y20qfb.png)
When k = 1
![a = 1^2 = 1](https://img.qammunity.org/2022/formulas/mathematics/high-school/1rm78yvcdqxgjwbfil12k1u0h7246ko7e9.png)
k = 2
![a = 2^2 = 4](https://img.qammunity.org/2022/formulas/mathematics/high-school/mnfzngbrzk0ymvpi220a3cfr280rr6egq9.png)
k=3
![a = 3^2 = 9](https://img.qammunity.org/2022/formulas/mathematics/high-school/iieborxmbgdf4j5x8gjllsujsc8s5qj86k.png)
It goes on until k = 10
![a = 10^2 = 100](https://img.qammunity.org/2022/formulas/mathematics/high-school/vqvn8dnwhkbt58iu8grwsvvts10irva9oa.png)
So, the possible values of a are:
![a = \{1,4,9,16,25,36,49,64,81,100\}](https://img.qammunity.org/2022/formulas/mathematics/high-school/4ly03ce3om5bu8bw7isjfwfae7vlg1uz58.png)