Final answer:
In order to overcome the electromagnetic repulsion between positively charged protons and induce fusion, the nuclei must be given enough kinetic energy to overcome the electric potential energy due to repulsion. Heating fusion fuel to high temperatures is one way to achieve this.
Step-by-step explanation:
The major obstruction to fusion is the Coulomb repulsion force between nuclei. Since the attractive nuclear force that can fuse nuclei together is short ranged, the repulsion of like positive charges must be overcome in order to get nuclei close enough to induce fusion. Figure 32.17 shows an approximate graph of the potential energy between two nuclei as a function of the distance between their centers. The graph is analogous to a hill with a well in its center. A ball rolled from the right must have enough kinetic energy to get over the hump before it falls into the deeper well with a net gain in energy. So it is with fusion. If the nuclei are given enough kinetic energy to overcome the electric potential energy due to repulsion, then they can combine, release energy, and fall into a deep well. One way to accomplish that end is to heat fusion fuel to high temperatures so that the kinetic energy of thermal motion is sufficient to get the nuclei together.