149k views
3 votes
Let (-5, 6) be a point on the terminal side of o.

Find the exact values of sin 0, cscO, and coto.

Let (-5, 6) be a point on the terminal side of o. Find the exact values of sin 0, cscO-example-1
User Dotsa
by
9.0k points

1 Answer

0 votes

The exact values of sin
\theta , csc
\theta , and cot
\theta are:

sin
\theta =
\frac {6} \sqrt(61)

csc
\theta =
\frac {\sqrt(61)} { 6}

cot
\theta = -5 / 6

How to find the exact values

To find the exact values of sin
\theta , csc
\theta , and cot
\theta , determine the values of the trigonometric ratios based on the given point (-5, 6) on the terminal side of
\theta .

Using the given coordinates, calculate the radius (r) and the angle (
\theta ) using the formulas:


r = \sqrt((-5)^2 + 6^2) \\= \sqrt(25 + 36) \\= \sqrt(61)


\theta = arctan(y/x) = arctan(6/(-5))

Let's calculate the values:

sin
\theta = y / r =
\frac {6} \sqrt(61)

csc
\theta = 1 / sin
\theta =
\frac {\sqrt(61)} { 6}

cot
\theta = x / y = -5 / 6

Therefore, the exact values of sin
\theta , csc
\theta , and cot
\theta are:

sin
\theta =
\frac {6} \sqrt(61)

csc
\theta =
\frac {\sqrt(61)} { 6}

cot
\theta = -5 / 6

User Minjung
by
7.8k points