Answer:
252 ; 0.00593 ; 0.0074 ; 0.9926 ; 0.347
Explanation:
A.)
n = 10 ; r = 5
Required outcome :
nCr = n! ÷ (n-r)!r!
10C5 = 10! ÷ (10-5)!5!
(10*9*8*7*6) / (5*4*3*2*1)
= 252
B.)
Total possible outcome : 24C5 = 42504
P(all will be from day shift) = 252 / (24C5) = 0.00593
C.)
P(all will be from the same shift) :
[(10C5)+(8C5)+(6C5)] ÷ 24C5
(252 + 56 + 6) / 42504 = 0.0074
D.)
Probability that at least 2 different shift will be represented :
1 - P(all will be from the same shift)
1 - 0.0074 = 0.9926
D.)
Probability that atleast one of the shift will be unrepresented :
(10+6C5) + (8+6C5) + (10+8C5) - (10C5)+(8C5)+(6C5)
[16C5 + 14C5 + 18C5 - 10C5 + 8C5 + 6C5] ÷ 24C5
(4368 + 2002 + 8568 - 252 + 56 + 6) / 42504
= 14748 / 42504
= 0.347