Answer:
The answer is below
Explanation:
When computing quartile and decile, the data must be arranged in ascending order.
Given the data points:
13 13 13 20 26 26 29 31 34 34 35 35 36 37 38 41 41 41 42 43 46 47 48 49 53 55 56 62 67 82
The numbers are arranged in ascending order. The total number of terms is 30.
a)

b)
