Yes, the matrix have an inverse and the inverse of the matrix is
![\left[\begin{array}{cc}-5&8\\-2&3\end{array}\right]](https://img.qammunity.org/2024/formulas/mathematics/college/48pumhtbe5f4b5d6qzluorhrmietcmp8p6.png)
Inverse of a matrix
The inverse of a matrix is another matrix that produces the multiplicative identity when multiplied by the given matrix. If we examine a matrix A, its inverse is denoted as A⁻¹. To get the inverse of a matrix, we would divide the adjugate of the provided matrix by the determinant of the given matrix.
Given that:
![A = \left[\begin{array}{cc}3 & -8 \\ 2 & -5 \end{array}\right]](https://img.qammunity.org/2024/formulas/mathematics/college/y0tjvhavjswkl0ydshz8jjed5eoittzdd8.png)
The determinant A of the 2 × 2 matrix is:
= (3 × -5) - (-8 × 2)
= - 15 + 16
= 1
This show that there is an inverse for this matrix since the determinant is not equal to zero. Thus, the inverse of the matrix can be computed as:
![Adj (A) = Adj \left[\begin{array}{cc}3 &-8\\ 2&5\\\end{array}\right]](https://img.qammunity.org/2024/formulas/mathematics/college/5wjdmt1ht3c8qb2s37vv3h0lskqzpqd8dk.png)
![\to \left[\begin{array}{cc}+(-5)&-(2)\\ -(-8)&(+3)\\\end{array}\right]^T](https://img.qammunity.org/2024/formulas/mathematics/college/to9rf5cqlvq3vjgeg92v8ihf43ye7xcg32.png)
![\to \left[\begin{array}{cc}-5&-2\\ 8&3\\\end{array}\right]](https://img.qammunity.org/2024/formulas/mathematics/college/mfle0a9iu6lurokxicjxzehv3tjaxpz38a.png)
![\to \left[\begin{array}{cc}-5&8\\ -2&3\\\end{array}\right]](https://img.qammunity.org/2024/formulas/mathematics/college/cpu13xci1xltvafl1a49fmltycxfq0zpr4.png)
Now,

![=(1)/(1)* \left[\begin{array}{cc}-5&8\\-2&3\end{array}\right]](https://img.qammunity.org/2024/formulas/mathematics/college/sfj9rc9ou4c8xdwr89mgt1rb98fmh32kpa.png)
![=\left[\begin{array}{cc}-5&8\\-2&3\end{array}\right]](https://img.qammunity.org/2024/formulas/mathematics/college/y219bhux43hlrzgtmddud76r4xjadaui91.png)